

International Journal of Dermatology, Venereology and Leprosy Sciences

E-ISSN: 2664-942X P-ISSN: 2664-9411 Impact Factor (RJIF): 5.67 www.dermatologypaper.com Derma 2025; 8(2): 21-24 Received: 05-05-2025

Abeer Ali Ali Yossif
Department of Dermatology
and Venereology, Faculty of

Accepted: 08-06-2025

Medicine, Tanta University, Tanta, Egypt

Al-Sayed Shaaban Hewedy Department of Dermatology and Venereology, Faculty of

Medicine, Tanta University,

Tanta, Egypt

Authority, Egypt

Nashwa Kamal Radwan Egyptian Atomic Energy

Yasmina Ahmed El-Attar Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Egypt

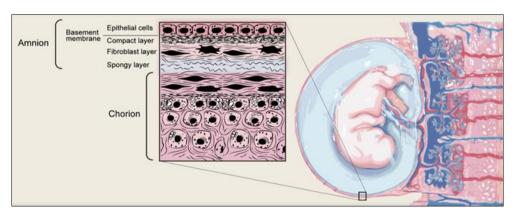
The human amniotic membrane: From structure to dermatologic innovation

Abeer Ali Ali Yossif, Al-Sayed Shaaban Hewedy, Nashwa Kamal Radwan and Yasmina Ahmed El-Attar

DOI: https://www.doi.org/10.33545/26649411.2025.v8.i2a.238

Abstract

The human amniotic membrane (HAM) has emerged as a novel biomaterial in dermatology, offering regenerative, anti-inflammatory, and antimicrobial properties that support its use in both therapeutic and aesthetic applications. This review provides a comprehensive overview of HAM's anatomical and structural composition, methods of processing, and its unique biological functions. A particular emphasis is placed on its dermatologic applications, including wound healing, psoriasis, skin rejuvenation, pigmentation disorders, Stevens-Johnson Syndrome, and hair regeneration. The article highlights HAM's potential to innovate clinical practice in dermatology and its growing relevance in tissue-based therapies.


Keywords: Amniotic membrane, dermatology, wound healing, regenerative medicine, tissue therapy

Introduction

1. Anatomy and Histology of the Amniotic Membrane

The fetal membranes are a complex structure essential for fetal development. They comprise two primary layers: the outer chorion, which interfaces with maternal tissue, and the inner amniotic membrane (AM), a thin (0.02-0.5 mm), translucent, avascular layer that encases the embryo and defines the amniotic cavity [1].

The AM develops from extra-embryonic tissue and includes both a fetal component (The chorionic plate) and a maternal component (the decidua). These layers are connected by chorionic villi, linking the cytotrophoblastic shell to the decidua basalis. Histologically, the AM comprises three layers: an epithelial layer, a thick basement membrane, and avascular mesenchymal stroma ^[2, 3] (Figure 1) ^[3].

Fig 1: Anatomy and histology of the amniotic membrane ⁽³⁾.

Nourishment is supplied via diffusion from the amniotic fluid or the underlying decidua, as the AM lacks innervation and lymphatic or blood vessels [4]. The epithelial layer comprises a single row of cuboidal epithelial cells with microvilli, which support secretory and transport functions. Beneath it lies the thickest basement membrane among human tissues,

Corresponding Author: Abeer Ali Ali Yossif Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Egypt followed by the avascular mesenchymal stroma, which includes three sublayers: the compact, fibroblast, and intermediate (spongy) layers (1,5).

The compact layer forms the primary fibrous structure and contains collagens (types I and III), secreted by fibroblasts. Collagens V and VI provide filamentous connections with

the basement membrane ^[5]. The intermediate (spongy) layer, adjacent to the chorion, features a non-fibrillar matrix rich in proteoglycans, glycoproteins, and mostly type III collagen. Its loose connection to the chorion allows the AM to be separated easily through blunt dissection ^[6] (Figure 2) ^[7]

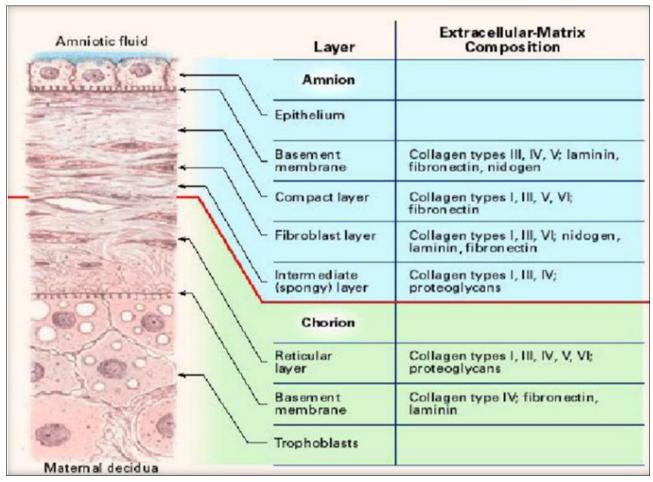


Fig 2: Schematic presentation of the structure of the fetal membrane at term. The extracellular matrix components of each layer are shown

2. Processing of the Amniotic Membrane

Human amniotic membranes (HAM) are harvested from placentas obtained during elective cesarean sections, with prior written informed consent. Donor selection follows stringent criteria: absence of malignancy, infant malformations, or pathologies; gestational age ≥ 35 weeks; negative family history of genetic diseases; and no risk of infectious diseases such as HIV, hepatitis B/C, or syphilis

After collection, the AM is washed thoroughly with sterile isotonic solutions (e.g., 0.9% sodium hypochlorite) to remove blood and debris. It is then air-dried and packed in polyamide bags. Sterilization is achieved via gamma irradiation using a 60Co source at 25 kGy, in accordance with International Atomic Energy Agency (IAEA) recommendations for tissue allografts [9].

3. Properties of Amniotic Membrane Derivatives

The HAM exhibits a range of beneficial biological properties, including:

Immunomodulation and Anti-inflammatory Effects: The AM does not elicit significant immune responses and suppresses proinflammatory cytokines such as IL-1 α and

IL-1 β ^[10]. HLA class I antigens are expressed in amniotic epithelial and mesenchymal cells, while class II antigens are not, contributing to low immunogenicity ^[12].

Antiangiogenic and angiogenic Balance: The AM exhibits antiangiogenic properties through the production of endostatin, thrombospondin-1 (TSP-1), and tissue inhibitors of metalloproteinases (TIMPs). Conversely, it also contains angiogenic factors like VEGF and bFGF, indicating a complex regulatory role [11].

Antibacterial and Antiviral Effects: It produces antimicrobial peptides such as β -defensins and proteins like SLPI and elafin, contributing to its bacteriostatic and antiviral activity [14].

Promotion of Epithelialization and Scar Prevention: The AM facilitates tissue regeneration, enhances epithelial cell proliferation and migration, and minimizes fibrosis and scarring [13].

4. Clinical Applications of Amniotic Membrane

Thanks to its multifunctional biological effects - anti-

inflammatory, antimicrobial, antifibrotic, and antiangiogenic - HAM creates an ideal microenvironment for cellular adhesion and regeneration in both *in vitro* and *in vivo* contexts ^[15]. First used in skin transplantation by Davis in 1910 ^[16], its applications have expanded across various medical fields:

4.1 Ophthalmology

HAM is extensively employed in ocular surface reconstruction - notably for corneal and conjunctival repair. It functions as a biologic bandage, reduces inflammation, promotes epithelial healing, and is used as a patch or contact lens-like graft ^[17].

4.2 Orthopedics

Applications include tendon and ligament repair, management of cartilage degeneration, joint space restoration, and prevention of scarring and adhesions in spinal fusion surgeries [18].

4.3 Urology

HAM has been studied in urologic tissue regeneration, including bladder repair (first reported in 1982) ^[19] and treatment of urethral strictures, where it has demonstrated anti-fibrotic effects ^[20].

4.4 Dentistry and Periodontology

In dental and periodontal therapy, AM accelerates gingival regeneration, supports tissue adhesion, and facilitates antimicrobial protection. Promising results have been reported in cases such as buccal mucosal reconstruction post-leukoplakia excision [21, 22].

4.5 Oncology

Due to its pro-apoptotic, antiangiogenic, immunomodulatory, and cell-cycle regulatory properties, the amniotic membrane has emerged as a promising candidate in cancer research. Initial studies, beginning in 2008, demonstrated its anti-carcinogenic potential in various cancer cell lines [23].

4.6 Tissue Engineering

In regenerative medicine, the scaffold a supportive matrix for cell and tissue growth is critical. HAM is an excellent natural scaffold due to its biocompatibility, low immunogenicity, elasticity, mechanical strength, and permeability. Its ability to deliver growth factors and genetic material makes it suitable for diverse tissue engineering applications [24].

5. Dermatologic Applications of the Amniotic Membrane5.1 Wound Healing

HAM was first used as a biological dressing for wound healing over a century ago. It minimizes infection, fluid loss, and pain while promoting rapid re-epithelialization in conditions such as burns, pressure sores, ulcers, and traumatic wounds [25, 26].

5.2 Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN)

In these severe ocular complications, HAM serves as a biological dressing, reducing pain and inflammation while preventing scarring and promoting epithelium repair [27].

5.3 Skin Rejuvenation and Aging

The growth factors and cytokines in amniotic tissue particularly EGF, TGF- β , and VEGF - support dermal fibroblast proliferation and collagen synthesis. This contributes to anti-aging effects and potential skin whitening through inhibition of melanogenesis [28].

5.4 Inflammatory Skin Disorders (e.g., Psoriasis)

HAM inhibits angiogenesis and fibrosis and promotes epithelial recovery. It has shown potential in psoriasis management, especially as an adjunct therapy using irradiated AM as a patch o.r graft ^[29].

5.5 Pityriasis Versicolor (PV)

Clinical trials have evaluated HAM combined with tea tree oil (TOSHAM) for treating PV lesions. The formulation leverages the antifungal and anti-inflammatory properties of both components, enhancing lesion resolution with fewer applications [30].

6. Hair Regeneration Potential

Amniotic fluid (AF) contains a rich mixture of bioactive components - including IGF-1, EGF, PDGF, IL-6, VEGF, and exosomes - that regulate hair follicle growth and transition to the anagen phase (15, 31, 32). AF-derived mesenchymal stem cells (AF-MSCs) stimulate follicular activity, dermal adipocyte expansion, and macrophage polarization, contributing to hair regrowth.

Conclusion

Human amniotic membrane and its derivatives have demonstrated impressive regenerative, immunomodulatory, and antimicrobial properties. Their clinical utility spans diverse medical fields, with expanding potential in dermatology, oncology, and hair regeneration. Ongoing research will continue to define its applications and mechanisms, making HAM an essential component in future biotherapeutic strategies.

References

- 1. Riboh JC, Saltzman BM, Yanke AB, Cole BJ. Human amniotic membrane-derived products in sports medicine: basic science, early results, and potential clinical applications. The American Journal of Sports Medicine. 2016;44(9):2425-2434.
- 2. Koob TJ, Lim JJ, Zabek N, Massee M. Cytokines in single layer amnion allografts compared to multilayer amnion/chorion allografts for wound healing. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2015;103(5):1133-1140.
- 3. Heckmann N, Auran R, Mirzayan R. Application of amniotic tissue in orthopedic surgery. American Journal of Orthopedics (Belle Mead NJ). 2016;45(7):E421-E425.
- 4. Hasegawa M, Fujisawa H, Hayashi Y, Yamashita J. Autologous amnion graft for repair of myelomeningocele: technical note and clinical implication. Journal of Clinical Neuroscience. 2004;11(4):408-411.
- 5. Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, *et al.* Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One. 2011;6(11):e26136.
- 6. Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M,

- Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell and Tissue Research. 2012;349(2):447-458.
- 7. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials. 2008;15:88-99.
- 8. Nemr W, Bashandy AS, Araby E, Khamiss O. Biological activity alterations of human amniotic membrane pre and post irradiation tissue banking. Pakistan Journal of Biological Sciences. 2016;19(7):289-298.
- 9. Singh R, Singh D, Singh A. Radiation sterilization of tissue allografts: a review. World Journal of Radiology. 2016;8(4):355-369.
- Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC. Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. British Journal of Ophthalmology. 2001;85(4):444-449.
- 11. Bogic LV, Brace RA, Cheung CY. Cellular localization of vascular endothelial growth factor in ovine placenta and fetal membranes. Placenta. 2000;21(2-3):203-209.
- 12. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, *et al.* Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26(2):300-311.
- 13. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Current Eye Research. 2000;20(3):173-177.
- 14. Grémare A, Jean-Gilles S, Musqui P, Magnan L, Torres Y, Fénelon M, et al. Cartography of the mechanical properties of the human amniotic membrane. Journal of the Mechanical Behavior of Biomedical Materials. 2019;99:18-26.
- Lim LS, Poh RW, Riau AK, Beuerman RW, Tan D, Mehta JS. Biological and ultrastructural properties of acelagraft, a freeze-dried γ-irradiated human amniotic membrane. Archives of Ophthalmology. 2010;128(10):1303-1310.
- 16. Anderson DF, Ellies P, Pires RT, Tseng SC. Amniotic membrane transplantation for partial limbal stem cell deficiency. British Journal of Ophthalmology. 2001;85(5):567-575.
- 17. Rahman I, Said DG, Maharajan VS, Dua HS. Amniotic membrane in ophthalmology: indications and limitations. Eye. 2009;23(10):1954-1961.
- Hendrijantini N, Hartono P. Phenotype characteristics and osteogenic differentiation potential of human mesenchymal stem cells derived from amnion membrane (HAMSCs) and umbilical cord (HUC-MSCs). Acta Informatica Medica. 2019;27(2):72-77.
- 19. Norris MA, Cohen MS, Warren MM, Becker SN, Baur PS Jr, Seybold HM. Bladder reconstruction in rabbits with glutaraldehyde-stabilized amniotic membranes. Urology. 1982;19(6):631-635.
- Gottipamula S, Sundarrajan S, Chokalingam K, Sridhar KN. The effect of human amniotic epithelial cells on urethral stricture fibroblasts. Journal of Clinical and Translational Research. 2019;5(1):44-49.
- 21. Velez I, Parker WB, Siegel MA, Hernandez M. Cryopreserved amniotic membrane for modulation of

- periodontal soft tissue healing: a pilot study. Journal of Periodontology. 2010;81(12):1797-1804.
- 22. Sham ME, Sultana N. Biological wound dressing-role of amniotic membrane. International Journal of Dental Clinics. 2011;3(3):71-73.
- 23. Mamede AC, Laranjo M, Carvalho MJ, Abrantes AM, Pires AS, Brito AF, *et al.* Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. Journal of Membrane Biology. 2014;247(4):357-360
- 24. Baguneid M, Seifalian A, Salacinski H, Murray D, Hamilton G, Walker M. Tissue engineering of blood vessels. Journal of British Surgery. 2006;93(3):282-290
- 25. Andonovska D, Dzokic G, Spasevska L, Trajkovska T, Popovska K, Todorov I, *et al.* The advantages of the application of amnion membrane in the treatment of burns. Prilozi. 2008;29(1):183-198.
- 26. Radwan NK, Nemr W. The use of irradiated amnion dressing for the treatment of antibiotic-disinfected skin ulcer. Journal of Tissue Engineering and Regenerative Medicine. 2020;14(9):1272-1280.
- 27. Gregory DG. Treatment of acute Stevens-Johnson syndrome and toxic epidermal necrolysis using amniotic membrane: a review of 10 consecutive cases. Ophthalmology. 2011;118(5):908-914.
- Davis A, Augenstein A. Amniotic allograft implantation for midface aging correction: a retrospective comparative study with platelet-rich plasma. Aesthetic Plastic Surgery. 2019;43(5):1345-1352.
- 29. Radwan NK, Ibrahim NF, Bashandy AS. Uses of gamma irradiated amniotic membrane as an alternative method in psoriasis treatment. Cell and Tissue Banking. 2018;19(4):733-741.
- 30. Nashwa RK, Ahmed EB, Nemr WA. Comparative study between topically applied irradiated human amniotic membrane in combination with tea tree oil versus topical tioconazole in pityriasis versicolor treatment. Cell and Tissue Banking. 2020;21(2):313-320.
- 31. Tumentemur G, Aygun EG, Yurtsever B, Cakirsoy D, Ovali E. The effect of amniotic fluid on hair follicle growth. bioRxiv [Preprint]. 2023. doi:10.1101/2023.09.08.556806.
- 32. Park J, Jun EK, Son D, Hong W, Jang J, Yun W, *et al.* Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Experimental and Molecular Medicine. 2019;51(7):1-15.

How to Cite This Article

Ali Yossif AA, Al-Sayed Shaaban Hewedy, Radwan NK, El-Attar YA. The human amniotic membrane: From structure to dermatologic innovation. International Journal of Dermatology, Venereology and Leprosy Sciences. 2025;8(2):21-24

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.